

单片集成低压降固定电压调器

1、功能描述

SL4275-G 是一款 5 脚 TO 封装的单片集成低压降固定电压调器。高达 42V 的输入电压被调节成 5.0V 的输出电压 VQ。该芯片能驱动 450mA 的负载且具有短路保护功能,以及过温保护功能。当输出电压 VQ 低于 4.65V 的典型值时,芯片的 RQ 脚会产生一个低电平复位信号,复位延迟时间可通过 D 脚延时电容来设定。

1.1、外部元件信息

SL4275-G 需要输入电容 C_I 来补偿走线影响。为了保证调节电路的稳定性,必须要有输出电容 C_Q 。在工作温度范围内,容值 $C_Q \geq 22uF$ 且 $ESR \leq 5\Omega$ 的输出电容可保证其稳定性。

1.2、电路描述

控制运放将参考电压和一个与输出电压成正比的电压相比较,并通过一个缓冲器来驱动串联 MOS 管的栅极。另外负载电流的限流控制单元可防止功率元件过饱和。该芯片还集成了很多内部电路进行过载、过温、等方面的保护。

1.3、特性

- 额定输出电压5V, 精度范围±2%
- ●超低功耗: 80uA
- ●上电和欠压复位
- ●低压差
- ●短路保护
- RoHs

TO263-5

www.slkormicro.com 1 Rev.2 -- 09 March 2020

2、原理框图

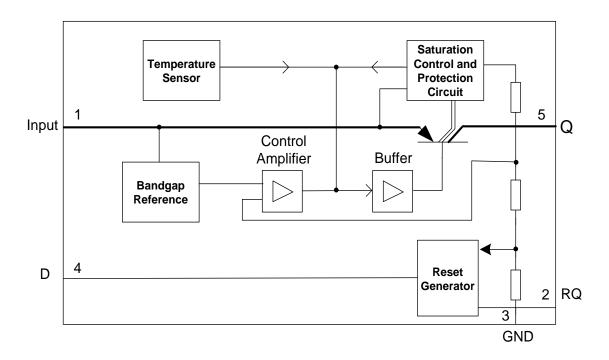


图2-1 模块框图

www.slkormicro.com 2 Rev.2 -- 09 March 2020

3、管脚定义

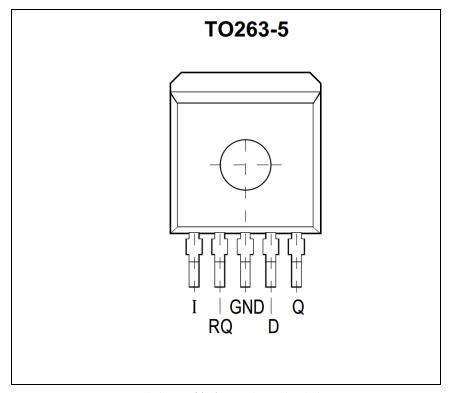


图3-1 管脚配置(顶视图)

表格3.1 管脚定义与功能

管脚号	符号	功能
1	I	输入:
		靠近 IC 端用陶瓷电容直接接地。
	RQ	复位输出:
2		漏极开路输出脚,需要一个外部上拉电阻,当输出电压低于复
		位阈值 VRT 时,RQ 被拉低;不使用时可以浮接。
3	GND	地:
3		内部连接到散热片。
4	D	复位延迟:
		连接电容到地来设置复位延迟时间;不使用时可以浮接。
5	Q	输出:
		使用在 10KHz 时 C _Q ≥22uF 且 ESR<5Ω 的电容连接到地。

www.slkormicro.com 3 Rev.2 -- 09 March 2020

4、一般产品特性

表格 4.1 最大额定值

Tj=-40℃到150℃。除非特殊说明,所有电压均相对于地。

会 粉	<i>/s/</i> r 口	极阝	艮值	光	备注
参数	符号	最小值	最大值	単位	
输入电压	VI	-0.3	42	V	
输出电压	VQ	-0.3	12	V	
温度	Tj	-40	150	$^{\circ}$	结温
血皮	Tstg	-40	150	$^{\circ}$	存储温度
热阻	Rthj-a	50	90	K/W	仅管脚
ESD 耐压	V _{ESD-HBM}	-2000	2000	V	人体模型 1)
	V _{ESD-CDM}	-1000	1000	V	充电设备模型 ²⁾

¹⁾ESD耐压人体模型依据JESD22-A114。

表格4.2 热阻

参数	符号	极限值			安存	条件
		最小值	典型值	最大值	单位	新 什
结壳热阻	RthJC		3.6		K/W	测量散热基座
	RthJA		22		K/W	
结至			74		K/W	仅引脚
环境热阻			42		K/W	300 mm²散热片
			34		K/W	600 mm²散热片

1) 不指生产测试, 特指设计;

www.slkormicro.com 4 Rev.2 -- 09 March 2020

²⁾ESD耐压充电设备模型依据JESD22-C101E。

5、电气特性

表格 5.1 电气特性

VI=13.5V; -40℃ \leq Tj \leq 150℃,除非特别说明。

₹₩	符号	参数值			34 D.	Minut v Dr. Ary Jol.
参数		最小值	典型值	最大值	単位	测试条件
工作电压	VI	5.5	13.5	42	V	
输出电压	VQ	4.9	5.0	5.1	V	IQ<450m;VI<42V
输出电流限制	IQ	450	800		mA	VI=13.5V
静态电流	Iq1		80	100	uA	IQ = 5mA
静态电流	Iq2			0.5	mA	IQ = 400 mA
压差	Vdr		0.3	0.5	V	IQ = 300 mA
负载调整率	ΔVQLo			150	mV	5mA <iq<450ma< td=""></iq<450ma<>
线性调整率	ΔVQLi		2	10	mV	8V <vi<40v,i<sub>Q=5mA</vi<40v,i<sub>
电源抑制比	PSRR		70		dB	100HZ@0.5Vpp
输出电容	C_Q	1			uF	ESR≤5Ω@10KHZ
复位输出 RQ:						
复位阈值	V_{RT}	4.5	4.65	4.8	V	输出电压跌落
复位迟滞	Vhys		0.2		V	
复位响应时间	t _{rr}			2	us	
复位输出低电压	V_{RQL}			0.4	V	Rext≥5KΩ ;VQ <vrt< td=""></vrt<>
复位输出漏电流	I_{RQ}		0	1	uA	V _{RQ} =5V
复位延迟 D:						
上触发阈值	V_{DT}		1.8		V	
下触发阈值	V_{DL}	0.2	0.4	0.6	V	
延时电容充电电流	I _{Charge}	3	6	9	uA	$V_D=0V$
复位延迟时间	$t_{\rm rd}$	10	15	20	ms	C _D =47nF
友 世 延	$t_{ m rd}$		8		us	引脚无电容

¹⁾压差 = VI-VQ (与VI =13.5V时的额定输出电压值相比VQ下降100mV时的VI-VQ)。

www.slkormicro.com 5 Rev.2 -- 09 March 2020

6、复位功能

6.1、复位阈值(VRT)

RQ必须外接上拉电阻,芯片启动后,当输出电压 VQ 低于 VRT 时,芯片内部将会拉低复位输出脚 RQ。

当芯片输出短路到地、芯片热关断、或者电源欠压时,该功能可以向 MCU 反馈一个复位低电平信号。

6.2、复位响应时间(t_{rr})

当输出电压 VQ 跌落低于 VRT 后,经过 trr时间,RQ 就会被置低;

6.3、复位延迟时间(trd)

在复位脚(RQ)被置高之前,将一个外置的电容连接到复位延时脚(D),此时 D 脚会输出一个恒定的电流(大约 6uA 左右)持续给这个外置电容充电,直至 D 脚电压超过内部比较器的上触发阈值 V_{DT} ,此时 RQ 将会被置高;

如果这个脚悬空,默认复位延迟时间为 8us 左右。

复位延迟时间 trd 由外置电容充电时间决定:

$$t_{rd} = \frac{C_D * 1.8V}{6uA}$$

Voltage Dip Undervoltage Secondary Overload Reset Shutdown at Input Spikc at Output 图

www.slkormicro.com 6 Rev.2 -- 09 March 2020

7、应用信息

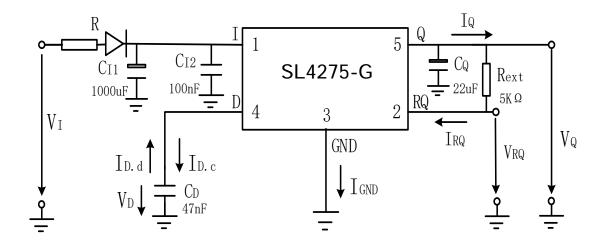


图7-1 应用电路

8、典型特性曲线



图 8-1 输出电压 VS 结温

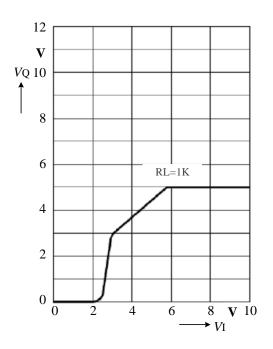


图 8-2 输出电压 VS 输入电压

www.slkormicro.com 7 Rev.2 -- 09 March 2020

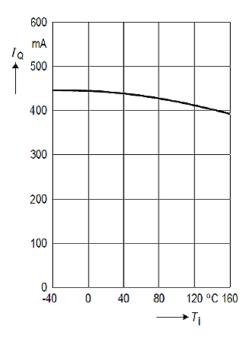


图 8-3 输出电流 VS 结温

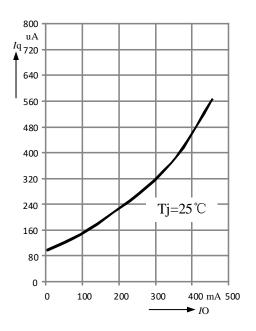


图 8-5 静态电流 VS 输出电流

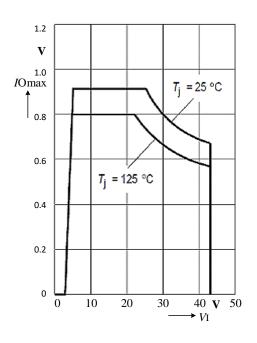


图 8-4 输出电流限制 VS 输入电压

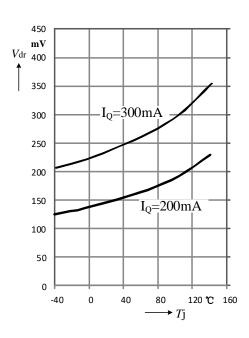
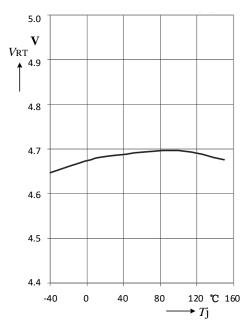
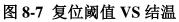




图 8-6 压差 VS 结温

www.slkormicro.com 8 Rev.2 -- 09 March 2020

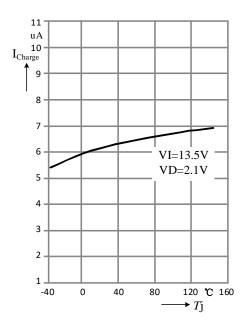
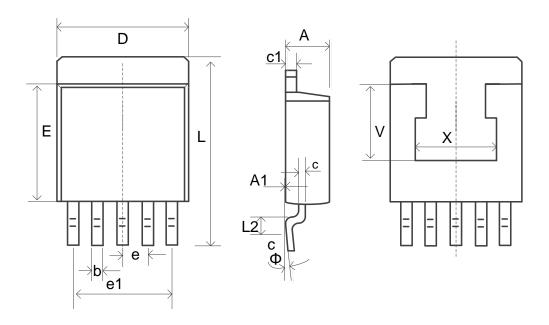



图 8-8 复位延迟充电电流 VS 结温

9、封装尺寸

Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
А	4.470	4.670	0.176	0.184	
A1	0.000	0.150	0.000	0.006	
b	0.710	0.910	0.028	0.036	
С	0.310	0.530	0.012	0.021	
c1	1.170	1.370	0.046	0.054	
D	9.880	10.18	0.389	0.401	
Е	8.200	8.600	0.323	0.339	
е	1.700) TYP	0.067 TYP		
e1	6.700	6.700 6.900		0.272	
L	15.14	15.54	0.596	0.612	
L1	5.080	5.480	0.200	0.216	
L2	2.340	2.740	0.092	0.108	
Ф	0°	8°	0°	8°	
V	6.250	REF	0.246 REF		
Х	7.800	REF	0.307 F	REF	

图 9-1 TO263-5 封装